首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6094篇
  免费   681篇
  国内免费   321篇
电工技术   293篇
综合类   352篇
化学工业   750篇
金属工艺   774篇
机械仪表   299篇
建筑科学   759篇
矿业工程   182篇
能源动力   167篇
轻工业   312篇
水利工程   143篇
石油天然气   190篇
武器工业   29篇
无线电   723篇
一般工业技术   1027篇
冶金工业   384篇
原子能技术   71篇
自动化技术   641篇
  2024年   21篇
  2023年   172篇
  2022年   201篇
  2021年   241篇
  2020年   268篇
  2019年   195篇
  2018年   188篇
  2017年   246篇
  2016年   246篇
  2015年   211篇
  2014年   429篇
  2013年   435篇
  2012年   450篇
  2011年   492篇
  2010年   332篇
  2009年   355篇
  2008年   276篇
  2007年   291篇
  2006年   300篇
  2005年   214篇
  2004年   203篇
  2003年   195篇
  2002年   156篇
  2001年   148篇
  2000年   126篇
  1999年   105篇
  1998年   104篇
  1997年   74篇
  1996年   52篇
  1995年   43篇
  1994年   41篇
  1993年   37篇
  1992年   35篇
  1991年   29篇
  1990年   45篇
  1989年   29篇
  1988年   17篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   8篇
  1983年   6篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   9篇
  1974年   2篇
排序方式: 共有7096条查询结果,搜索用时 375 毫秒
1.
2.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
3.
In this work, the composition-dependent point defect types and formation energies of RE2Hf2O7 (RE = La, Ce, Pr, Nd, Pm, Sm, Eu and Gd) as well as the oxygen diffusion behavior are systematically investigated by first-principles calculations. The possible defect reactions and dominant defect complexes under stoichiometric and non-stoichiometric conditions are revealed. It is found that O Frenkel pairs are the predominant defect in stoichiometric pyrochlore hafnates. Hf-RE cation anti-site defects, accompanied by RE vacancies and/or oxygen interstitials, are stable in the non-stoichiometric case of HfO2 excess. On the other hand, RE-Hf anti-site defects together with oxygen vacancies and/or RE interstitials are preferable in the case of RE2O3 excess. The energy barriers for the migration along the VO48f - VO48f pathway of pyrochlore hafnates were calculated to be between 0.81 eV and 0.89 eV. Based on these results, a defect engineering strategy is proposed and the pyrochlore hafnates investigated here are predicted to exhibit potential oxygen ionic conductivity.  相似文献   
4.
In this study, we developed a unique defect healing method for 3D printed ceramic compact via cold isostatic pressing (CIP) after debinding, and typical features of interlayer interface defects of 3D-printed zirconia compact were characterized and found to be reduced significantly. The characteristic sintering kinetics window and microstructure evolution of the healed sintered bodies were systematically investigated, which was found to be quite different from conventional shaping methods. The three sintering stages are probed by their feature microstructure details such as the mechanically flattening surface at the early sintering stage, the heterogeneous microstructure and high porosity in the interlayer interface region at the middle stage, and the slightly ripple-like structural features combined with the healed interlayer defects at the final stage. The evolution of the pore structure of the healed 3D printed bodies were traced and the mechanical properties such as the Young's modulus, hardness, and fracture toughness were measured to understand the significance of the heal effect.  相似文献   
5.
It is believed that promoting the fraction of ferroelectric orthorhombic phase (o-phase) through O-poor growth conditions can increase the spontaneous polarization of HfO2 and (Hf,Zr)O2 thin films. However, the first-principles calculations show that the growth may be limited by the easy formation of point defects in the orthorhombic and tetragonal phases of HfO2, ZrO2, and (Hf,Zr)O2. Their dominant defects, O interstitial (Oi) under O-rich conditions and O vacancy (VO) under O-poor condition, have low formation energies and quite high density (1016–1019 cm−3 for 800–1400 K growth temperature). Especially, Oi has negative formation energy in tetragonal HfO2 under O-rich condition, causing non-stoichiometry and limiting the crystalline-seed formation during o-phase growth. High-density defects can cause disordering of dipole moments and increase leakage current, both diminishing the polarization. These results explain the experimental puzzle that the measured polarization is much lower than the ideal value even in O-poor thin films and highlight that controlling defects is as important as promoting the o-phase fraction for enhancing ferroelectricity. The O-intermediate condition (average of O-rich and O-poor conditions) and low growth temperature are proposed for fabricating HfO2 and (Hf,Zr)O2 with fewer defects, lower leakage current, and stronger ferroelectricity, which challenges the belief that O-poor condition is optimal.  相似文献   
6.
《Ceramics International》2021,47(21):30439-30447
Bismuth titanate (Bi4Ti3O12, BIT) exhibits a high Curie temperature and anisotropic electrical performance owing to its layered perovskite structure, and hence, it is an important ferroelectric material for high-temperature piezoelectric applications. It is crucial to understand the effects of the anisotropy in BIT-based ferroelectrics for developing novel high-temperature piezoelectric materials. In this study, a highly textured BIT ceramic was fabricated using the tape-casting technique from highly grain-oriented BIT platelets prepared by the molten salt method. The textured BIT ceramic showed a dense microstructure and high grain orientation along the (00l) plane with a texturing degree F00l = 0.86. It exhibited significant anisotropy in the electrical properties along the directions parallel and perpendicular to the axis of the tape-casting plane. Double ferroelectric hysteresis PE loops and normal ferroelectric PE loops were observed in the parallel and perpendicular samples, respectively. In addition to the layered crystal structure and domains, the anisotropy in the arrangement of the oxygen vacancy defects and their transport in the structure led to a significant anisotropy in the ferroelectric properties of the textured BIT ceramics. This work demonstrates the anisotropic arrangement of the oxygen vacancy defects and its effect on the electrical properties of high-temperature bismuth layer-structured ferroelectrics.  相似文献   
7.
A proper detection and classification of defects in steel sheets in real time have become a requirement for manufacturing these products, largely used in many industrial sectors. However, computers used in the production line of small to medium size companies, in general, lack performance to attend real-time inspection with high processing demands. In this paper, a smart deep convolutional neural network for using in real-time surface inspection of steel rolling sheets is proposed. The architecture is based on the state-of-the-art SqueezeNet approach, which was originally developed for usage with autonomous vehicles. The main features of the proposed model are: small size and low computational burden. The model is 10 to 20 times smaller when compared to other networks designed for the same task, and more than 700 times smaller than general networks. Also, the number of floating-point operations for a prediction is about 50 times lower than the ones used for similar tasks. Despite its small size, the proposed model achieved near-perfect accuracy on a public dataset of 1800 images of six types of steel rolling defects.  相似文献   
8.
《Ceramics International》2022,48(14):20041-20052
The growing demand for radiation-resistant optical glasses for space and nuclear radiation applications has attracted significant research interest. However, radiation-resistant fluorophosphate glasses have been poorly studied. In this work, we report on the tailoring and performance of radiation-resistant fluorophosphate glasses that contained cerium through codoping with Sb2O3 and Bi2O3. The physical properties, optical properties, microstructure, and defects of fluorophosphate glasses were investigated using transmittance measurements, absorption measurements, as well as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. The results showed that the radiation resistance of all codoped fluorophosphate glasses was better than the undoped cerium-containing fluorophosphate glasses after 10–250 krad(Si) irradiation. Especially in glasses doped with Bi2O3, the optical density increment at 385 nm was only 0.1482 after 250 krad(Si) irradiation. The CeO2 prevented the development of phosphate-related oxygen hole center (POHC) defects, whereas further codoping with Bi2O3 suppressed the formation of oxygen hole center (OHC) and POEC defects, reducing the breaking of phosphate chains caused by CeO2. Bi3+ is more likely than Sb3+ to change the valence, affecting the transition equilibrium of intrinsic defects and reducing the concentration of defects produced by irradiation. When codoping with Sb2O3 and Bi2O3, Bi2O3 does not enhance radiation resistance owing to the scission effect of Sb2O3 on the phosphate chain, which is not conducive to the radiation resistance of glasses. This indicates that the cerium-containing fluorophosphate glasses doped with Bi2O3 can effectively suppress the defects caused by irradiation and improve the radiation resistance of the glasses.  相似文献   
9.
Spark is a distributed data processing framework based on memory. Memory allocation is a focus question of Spark research. A good memory allocation scheme can effectively improve the efficiency of task execution and memory resource utilization of the Spark. Aiming at the memory allocation problem in the Spark2.x version, this paper optimizes the memory allocation strategy by analyzing the Spark memory model, the existing cache replacement algorithms and the memory allocation methods, which is on the basis of minimizing the storage area and allocating the execution area according to the demand. It mainly including two parts: cache replacement optimization and memory allocation optimization. Firstly, in the storage area, the cache replacement algorithm is optimized according to the characteristics of RDD Partition, which is combined with PCA dimension. In this section, the four features of RDD Partition are selected. When the RDD cache is replaced, only two most important features are selected by PCA dimension reduction method each time, thereby ensuring the generalization of the cache replacement strategy. Secondly, the memory allocation strategy of the execution area is optimized according to the memory requirement of Task and the memory space of storage area. In this paper, a series of experiments in Spark on Yarn mode are carried out to verify the effectiveness of the optimization algorithm and improve the cluster performance.  相似文献   
10.
Macromolecular crystal structure determination can be complicated or brought to a halt by crystal imperfections. These issues motivated us to write up what we affectionately call ‘The Definitive Hitchhiker’s Guide to Pathological Macromolecular Crystals: Lattice Disorders and Modulations’. Perhaps the most challenging imperfections are lattice order–disorder phenomena and positional modulations. Many of these types of crystals have been solved, and progress has been made on the more challenging forms. Diagnostic tools and how to solve many of these problem crystal structures are reviewed. New avenues are provided for approaching the solution of incommensurately modulated crystals. There are a good number of case studies in the literature of lattice order–disorder phenomena and crystallographic modulations that make it timely to write a review. This review concludes with a projected pathway for solving incommensurately modulated crystals, personal views of future directions and needs of the crystallographic community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号